
ADVICE FOR STUDENTS FOR LEARNING ABSTRACT 

ALGEBRA 

 

All references to specific exercises correspond to "Contemporary 

Abstract Algebra," 7th edition, Brooks Cole Cengage Learning, 2010 by 

Joseph A. Gallian  

You should periodically reread this page as the course progresses since 

many of the comments refer to specific situations that will arise from time 

to time.  

Unfortunately many students struggle with this subject. First and 

foremost you must study the material regularly. Don't wait until a day or 

two before an exam or when homework is due.  

One of the greatest problems I see with students is that they do not have 

the definitions and the theorems memorized. They will come to my office 

and say that they can't do a certain problem such as prove some subset of 

a group is a subgroup. I will say to them "What does the One Step 

Subgroup Test say?" They won't know. Or I will ask them "What does |a| 

= 6 mean?" They will reply incorrectly that a
6
 = e. Well, of course, if you 

do not know the definitions and theorems you won't be able to use them. 

To learn to do proofs pick out several of the easier proofs that are given 

in the book (for instance, Example 5 of Chapter 3, Theorem 3.4 and 

Theorem 4.1). Write the statements down but not the proofs. Then see if 

you can prove them. Students often try to prove a statement without using 

the entire hypothesis. Keep in mind that you MUST use the hypothesis. If 

you cannot prove the statement, look at the first line of the proof in the 

text. That might be enough to get you started. If it is not, then look at the 

next line. Repeat this over and over until you can do them without 

looking at the text. Eventually you will get the hang of it. There is a direct 

relationship between your understanding of the subject and your ability to 

do proofs. Proofs test your understanding. They also test your creativity.  

Keep in mind that you can only use what you have. For example, 

Exercise 12 in Chapter 3 says that if you have an Abelian (that is, 

commutative) group with two elements of order 2 then it has a subgroup 

of order 4. So we can let a and b be the two elements of order 2. Now all 

we have are a and b and the group axioms so USING ONLY a and b you 

must create a subgroup of order 4. Well, the axioms tell us that the 

identity is in the subgroup and closure tells us that ab is in there too so the 



subgroup must be {e,a,b, ab}. Then all we need do is to show that ab is 

distinct from the other three elements and use the Finite Subgroup Test to 

prove that this set is a subgroup. 

Here is another example. Look at Exercise 60 on page 69. This exercise 

says to prove that every finite group with more than one element must 

have an element of prime order. Since the group has more than one 

element we may let a be a nonidentity element. If a has prime order we 

are done. If a does not have prime order then USING only a we must find 

an element of prime order. Since all we have to work with is a, the 

element of prime order has to be found using a. So, consider a, a
2
, a

3
, a

4
 

etc. One of these must have prime order. But how do we know which 

one? Well, try some abstract examples (not specific examples such as 

U(n) or Dn) by supposing that |a|= 15. Then we see that |a
3
| = 5. If we had 

|a| = 12, then |a
4
| = 3. After trying several such examples we realize that if 

we write |a| = pk where p is prime and k > 1 we have |a
k
| = p. Note that 

we were able to do this problem using only the element a and closure.  

Another thing that you must do is learn in WORDS what each concept 

given in symbols means. For example, Z(G) is the set of all elements that 

commute with EVERY element of G while C(a) is the set of all elements 

that commute with a. Likewise, you should think of |a| as the 

SMALLEST positive power of a that gives the identity.  

Whenever possible, convert words to symbols. For example, if you are 

given that a group G is finite write "Let |G| = n." If you are given that a 

group is Abelian write "We know that ab = ba for all a and b." If you are 

asked to prove that a group is Abelian write "We want to show that ab = 

ba for all a and b." If you are given that a group has an element has order 

10. Write "We know that there is an element a such that a
10

 = e and 10 is 

the least positive integer n such that a
10

 = e." If you are asked to prove 

that an element a has order 10 write "We want to show that a
10

 = e and 

10 is the least positive integer n such that a
10

 = e." If you are given that a 

group G is cyclic write "We know that there is an element g such that 

every element of G has the form g
n
." If you are asked to prove that a 

group G is cyclic write "We want to find an element g such that every 

element of G has the form g
n
." If you are given that x commutes with a 

write "We know that xa = ax." If you are asked to prove that x commutes 

with a write "We must show that xa = ax."  

 

Use suggestive notation. For example, if a problem involves one element 

that is fixed and one that varies or is unknown, denote the fixed element 

by a and the variable element by x. For instance, since C(a) is the set of 



all elements that commute with a, write "Let x belong to C(a)." If you are 

given two groups G and H denote the elements from G by g1 and g2 and 

the elements from H by h1 and h2 etc. Very often the statement of the 

problem suggests how to solve the problem. When you convert what you 

know from words to symbols and what you want to prove from words to 

symbols you often will be able to see how to proceed.  

 

Whenever you are doing an exercise from the book or a problem on an 

exam you should ask yourself ``Is there a theorem in the book whose 

statement seems similar to the statement of the problem?" Most exercises 

and exams problems can be easily done by using one of the theorems in 

the book. For example, Exercise 17 of Chapter 2 asks to prove a group is 

Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$. Notice that the latter 

condition appears similar to Theorem 2.4 (Socks-Shoes) and indeed using 

this theorem will provide a easy proof. Exercise 62 in Chapter 4 is a 

simply application of Theorem 4.2.  

 

Here are some remarks about how to do algebra problems.  

1. When you are asked to prove a statement you must not assume that the 

statement is true.  

2. Never assume a group is Abelian. Some people begin their argument 

for Exercise 35 of Chapter 2 by saying "Assume that the group is 

Abelian." This is incorrect for you have no reason to assume a group is 

Abelian. Many groups are not Abelian.  

3. Never divide group elements. Instead, use cancellation or inverses.  

4. Never assume a group is finite when that condition was not stated.  

5. In the text it is usually the case that elements of a group are denoted by 

letters from the beginning of the alphabet a,b, c or end of the alphabet 

x,y,z. Integers such as exponents and orders of elements or groups are 

usually denoted with letters from the middle of the alphabet i,j,k,m,n,s,t. 
For example, let |a| = n. You should use the same conventions.  

6. When asked to find the inverse of an element, always check your 

answer by multiplying the element and its purported inverse to see if you 

get the identity. For example, to check that (ab)
-1

 = b
-1

a
-1

 all you need do 

is observe that abb
-1

a
-1

 = e.  

7. After you finish a proof look to see if you have used all the hypotheses. 

For example, if you were given that the group is Abelian check to see if 



you used that condition in your argument. If the hypothesis says the 

group is finite check to see where you used finiteness. Occasionally, it 

may be the case that a given condition is not really needed but was there 

just to make the problem easier but usually all the given conditions are 

needed for the you to be able to give a valid proof with what you know at 

this point in the book.  

8. Many exercises in the book involve a parameter n and ask you to prove 

something. (For example, Exercises 15, 19, and 20 in Chapter 2). You 

should look at the cases for small values of n such as 2 and 3 to gain 

insight and look for a pattern. This often tells you how to do the general 

case but keep in mind that doing specific values for n does not do the 

general case. The problem must be done for all n, not a few examples. In 

general, you cannot prove a statement is true by using specific examples.  

9. When ask to provide an example to illustrate something, a dihedral 

group such as D4 is often a good group to try. For example, Exercises 6 

and 16 of Chapter 2.  

10. On problems that ask for some answer rather that to prove something 

do not just give an answer. Show that your answer is valid. You must 

give reasons or an explanation of why your answer is correct. One 

example is "If a1,a2,...,an belong to a group, what is the inverse of 

a1a2...an?" (Exercise 20 of Chapter 2). Give the answer and show that the 

product of a1a2...an and your answer is the identity. Similarly, Exercise 14 

of Chapter 4 asks "What is |G|?" Do not just give an integer. Give reasons 

why that answer is valid.  

11. In many cases problems can be solved by simply writing out the 

expressions. For example in Exercise 26 of Chapter 2 write out (ab)
2
 = a

2
 

b
2
 as abab = aabb. Exercise 19 in Chapter 2 works the same way. Just 

write the expression out. (Many people incorrectly do Exercise 19 by 

using commutativity.)  

12. Many theorems in the book about groups and elements of groups 

involve divisibility conditions and greatest common divisors of two 

integers. Divisibility only applies to integers. Infinity is not an integer. Do 

not talk about an integer dividing infinity or an integer being rel atively 

prime to infinity.  

13. Whenever you say "Assume ..." you must have a reason why you may 

assume what it is you are assuming. For example, if you are given that H 

is a subgroup of G you may make the statement: Assume x is an element 

of H because subgroups are not empty. You cannot say "Assume G is 



Abelian" without providing some reason why you may assume that G is 

Abelian. As another example, if you are given that a group is finite and a 

is an element of the group you may say "Assume |a| = n" because all 

elements of a finite group have finite order. However, if you do not know 

that the group is finite you can't assume that an arbitrary element from the 

group has finite order. Instead, you should take two cases. Case 1: |a| is 

finite and Case 2: |a| is infinite.  

14. When doing a problem about the order of an element, such as proving 

that an element and its inverse have the same order, you will usually have 

to deal with the finite case and infinite case separately. That is, |a| = n is 

one argument and |a| is infinity is a different case. This is usually true as 

well when dealing with the order of a group. The cases of a finite group 

and an infinite group may require different arguments.  

15. When asked for an example of something, use a specific example. For 

instance, in response to Exercise 6 of Chapter 2 some people say that 

matrices have the property that a
-1

ba is not equal to b. But you must 

actually give the specific matrices since some matrices have the desired 

property and some do not have the property.  

16. In general, you cannot take roots (square roots, cube roots, etc.) in 

groups. Only integer powers of group elements are permissible.  

17. Whenever you are asked to prove a subset of a group is a subgroup, 

use one of the subgroups tests. If you know the subset is finite use the 

Finite Subgroup Test. 18. When an exercise says prove something is true 

for an integer do not assume the integer is positive. In general, the cases 

that an integer is positive and an integer is negative require slightly 

different arguments. Usually, you can use the positive integer case to 

prove the negative integer case by using the Law of Exponents. To 

illustrate the technique consider Exercise 19 in Chapter 2. To prove (a
-

1
ba)

n
 = a

-1
b

n
a for all n , first prove it for positive n by writing out the 

expression a
-1

ba n times and canceling all the inner a and a
-1

 terms. 

(Alternatively, you could use induction.) To prove the statement when n 

is negative observe that a
-1

b
n
a = ((a

-1
ba)

-n
) 

-1
 and that -n is positive. So, 

since you have already done the case when the exponent is positive you 

have (a
-1

 ba)
n
 = ((a

-1
ba)

-n
)

-1
 =  

(a
-1

b
-n

 a)
-1

. Then using the socks-shoes property you have (a
-1

b
-n

a)
-1

 = a
-1

 

b
n
a. Finally, the case that n = 0 follows because any element to the 0th 

power is the identity by definition.  

19. When dealing with an abstract group (that is, one in which the 

elements and operation are not specified) use e to denote the identity and 



use multiplication as the operation (that is, ab). If you are told the 

operation is addition use a + b , -a for the inverse of a, and 0 for the 

group identity.  

20. The negation "for all" is "there exist some." For example, in an 

Abelian group ab = ba for all a and b. So, in a non-Abelian group there 

exist SOME elements a and b such that ab is not ba. To remember this 

think of a common statement such as "The team won every game." The 

negation is "There exist some game the team did not win."  

21. When ask to prove two groups are not isomorphic students often 

show that some specific mapping does not satisfy the definition of 

isomorphism. This merely proves that specific mapping is not an 

isomorphism. It does not preclude that some other mapping may be an 

isomorphism. Instead, one must show that NO mapping satisfies the 

definition. This can be done by assuming there is some generic 

isomorphism and using only properties of isomorphisms derive a 

contradiction. Examples 5 and 6 of Chapter 6 illustrate how this can be 

done. Notice that no specific mapping was assumed. Usually the easiest 

way to prove that two groups are not isomorphic is to show that they do 

not share some group property. For example, the group of nonzero 

complex numbers under multiplication has an element of order 4 (the 

square root of -1) but the group of nonzero real numbers do not have an 

element of order 4. As another example, we see that S4 is not isomorphic 

to D12 because D12 has an element of order 12 whereas S4 has elements of 

orders only 1, 2, 3 and 4. Often it is easiest to proceed by checking if the 

largest order of any element in each of the groups agree. When the orders 

of the elements in two groups match you can prove they are not 

isomorphic by showing that they have a different number of elements of 

some specific order. Exercise 35 of the Supplemental Exercises for 

Chapters 5-8 is such a case. When comparing the number of elements of 

some specific order, elements of order 2 is often a good choice.  

 


